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Abstract. We present a framework to measure the strength of environmental filtering and
disequilibrium of the species composition of a local community across time, relative to past,
current, and future climates. We demonstrate the framework by measuring the impact of
climate change on New World forests, integrating data for climate niches of more than 14 000
species, community composition of 471 New World forest plots, and observed climate across
the most recent glacial–interglacial interval. We show that a majority of communities have
species compositions that are strongly filtered and are more in equilibrium with current
climate than random samples from the regional pool. Variation in the level of current
community disequilibrium can be predicted from Last Glacial Maximum climate and will
increase with near-future climate change.

Key words: climate change; climate mismatch; community assembly; community structure; disequilib-
rium; environmental filtering; fundamental niche; lag; New World forests; regional species pool.

INTRODUCTION

A major challenge in ecology is understanding and

predicting the response of communities to changing

climates, past, present, and future. A key issue is that

species’ responses may not be instantaneous or optimal.

As a result, local community composition may not

accurately reflect shifting abiotic conditions (Svenning

and Sandel 2013). We propose that novel insights into

how communities respond to environmental change can

be found by reframing community structure directly in

terms of patterns and processes linked to climate niches.

Specifically, we focus on the influence of environmental

filtering and environmental disequilibrium. We define

environmental filtering as a process creating communi-

ties composed of species with more similar climate

niches relative to the species in the regional pool and

environmental disequilibrium as a pattern indicating

communities composed of species with climate niches

less close to the local observed climate relative to the

species in the regional pool. Community structure may

therefore be understood as the outcome of interactions

between environmental filtering and disequilibrium.

There is empirical evidence for both environmental

filtering and environmental disequilibrium in real

communities. Filtering can occur in extreme environ-

ments that reduce viable strategies for plants at high

elevations (Pottier et al. 2012) and high latitudes

(Swenson and Enquist 2007, Hawkins et al. 2013).

Disequilibrium can occur when bird species do not fully

track contemporary change in winter minimum temper-

ature (La Sorte and Jetz 2012) or when plants (Bertrand

et al. 2011, Ordonez 2013, Svenning and Sandel 2013)

and butterflies (Devictor et al. 2012) lag in their response

to climate change. Better understandings of communi-

ties’ disequilibrium dynamics are needed for predicting

and managing community response to near-future

global change.

We develop a framework that can improve inference

of climate effects on communities, based on analyzing
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community composition, observed climate, and species’

climate niches. Our approach aims to detect the signal of
environmental filtering and environmental disequilibri-
um in communities over time. We show how to quantify

environmental filtering and disequilibrium using com-
munity climate statistics and demonstrate the frame-
work with an analysis of New World forest

communities, investigating the signals of environmental
filtering and disequilibrium relative to past, present, and
future climates.

COMMUNITY CLIMATE FRAMEWORK

Our framework is useful for measuring community
structure in two contexts: unscaled (whether the strength

of filtering and mismatch is large) and scaled (whether
the strength differs in the local community relative to the
regional species pool). The unscaled approach is useful

for comparing the structures of communities and
delineating species pools. The scaled approach is useful
for assessing local community assembly processes. Thus,

both approaches provide complementary information.
Moreover, the scaled approach complements phyloge-
netic (Webb et al. 2002) and trait-based (Kraft et al.

2008) frameworks for understanding community struc-
ture by generating inferences from complementary
climate-niche data.
Our framework integrates information on species’

broadscale climate niches, the species composition of the
local community, the surrounding region, and local
climate conditions. These data are combined via a

community climate diagram, from which we derive two
statistics (Table 1). These statistics are calculated for the
climate inferred from community composition at time

tinf relative to the observed climate at time tobs and are
analyzed alone (unscaled) or after controlling for
differences in regional pool composition (scaled).

We provide an illustrated description of the approach
in Fig. 1, as well as a complete mathematical formula-
tion in the Materials and methods. Our community

climate framework is implemented as an R package

(comclim; R Development Core Team 2007) and can

easily be applied to other data sets.

Definitions and data

Consider a regional pool of species, P, at time tinf. For
each species i, we first infer each species’ realized climate
niche at time tinf, Ni(tinf ), in n-dimensional environmen-

tal space by transforming geographic observations using
a set of climate layers (Fig. 1A). We next consider a
community C, whose composition is a subset of P, at

time tinf. Suppose also that the observed climate at C at
time tobs is ~EobsðtobsÞ, as measured by weather stations,
calculated by general circulation models, or determined
from proxies. We then define the inferred climate of the

community at tinf, ~E infðtinfÞ. The inferred climate is the
point in climate space that is the center of all species’
realized niches, giving equal weight to all species (Eq. 1).

This concept is similar to a multidimensional version of
an Ellenberg indicator value (Lenoir et al. 2013), a
community inferred temperature (Devictor et al. 2012),

or a transfer-function or coexistence-interval climate
reconstruction (Birks 1998, Mosbrugger et al. 2005).

The observed climate and species composition of a

community can be visualized together on a community
climate diagram (Fig. 1B). This diagram is drawn in n-
dimensional climate space and is visualized as bivariate
plots for each combination of variable pairs. First, the

climate niches for all species that occur in the
community are drawn as a dot for each species’ niche
centroid. Second, the observed climate of the commu-

nity at time tobs is drawn as a black circle. More than
one black circle can be used to represent the local
climatic conditions at multiple points in time (e.g., as in

Fig. 2). Third, the inferred climate at tinf is drawn as a
black circle.

A community climate diagram is summarized by two

statistics: community climate volume and community
climate mismatch. The climate volume is related to
environmental filtering and measures the total amount

of climate space occupied by overlapping all species in

TABLE 1. Summary of interpretation of community climate statistics.

Metric Name Interpretation Smaller values mean Larger values mean

DC(tinf ) community climate
volume

climate niche volume occupied by
species in community at time
tinf

more specialist species
or species from fewer
biogeographic regions

more generalist species
or species from more
biogeographic regions

dC(tinf ) community climate
volume deviation

climate niche volume occupied by
species in community at time
tinf, relative to niche volume for
species in a random sample
from regional species pool

,0: environmental
filtering

.0: environmental
permissiveness or
unmeasured
microclimate
variation

j~KCðtinf ; tobsÞj community climate
mismatch

distance between inferred climate
at time tinf from observed
climate at tobs

community near
climatic center of
biogeographic region

community near edge
of biogeographic
region

kC(tinf,tobs) community climate
mismatch deviation

distance between inferred climate
at time tinf from observed
climate at tobs, relative to
distance for species from a
random sample from regional
species pool

,0: environmental
equilibrium

.0: environmental
disequilibrium
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FIG. 1. Summary of our community climate framework. (A) Climate niches for six species in a regional pool are determined
from observations (gray symbols; centroid as black symbols). (B) A community climate diagram showing local species composition
at time tinf (centroids in red symbols) and observed climate (black circle) at time tobs. The inferred climate (black dot) indicates the
climate point in the middle of all species’ occurrences at tinf. (C) Community climate volume DC(tinf ) indicates the climate space
occupied by species in the community at tinf, accounting for the niche breadth of each species. It is drawn as a red circle with radius
proportional to the calculated volume. (D) Community climate mismatch ~KCðtinf ; tobsÞ from tinf to tobs is the vector between inferred
climate at tinf and observed climate at tobs and indicates mismatch between species composition and climate. It is drawn as a red
arrow with length and direction equivalent to the mismatch vector. In (E), a null distribution of these statistics (black) is generated
by sampling random communities from the regional pool, and in (F), community climate deviations (dC(tinf ) and kC(tinf,tobs); red
arrows) are computed by comparing the observed statistics (red vertical line) to the null distributions (black curves; vertical short-
dashed gray lines are 25% and 75% quartiles, and the vertical long-dashed black line is the median).
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the community (Fig. 1C), taking into account their niche

breadths. We define community climate volume, DC(tinf ),

via a one-dimensional proxy, as the mean median

distance between the inferred climate and random

samples from all species’ niches in the community (Eq.

2). The climate mismatch is related to disequilibrium and

measures the distance between the community’s inferred

climate at one time and the observed climate at the same

or another time (Fig. 1D). We define the community

climate mismatch, ~KCðtinf ; tobsÞ as the vector between the

inferred climate at time tinf and the observed climate at

time tobs (Eq. 3). Note that this mismatch is between the

mean community inferred climate and the observed

climate. Hence, a nonzero mismatch may not mean that

the observed climate is outside what the species in the

community can tolerate, if the component species have

sufficient niche breadth (i.e., limited filtering, such that

DC(tinf ) � j~KCðtinf ; tobsÞj).
It is important to note that because these statistics use

a Euclidean distance metric, the magnitudes of climate

axes must be comparable. As a result, all climate axes

should be rescaled (e.g., by logarithmic or z-score

transformation) prior to analysis.

Unscaled analysis of community climate statistics

Raw values of these statistics can provide novel

insights into comparative biogeography. For example, a

community with a large value of DC(tinf ) (relative to

other communities) has a composition that includes

species with broader and/or more distinct climate niches

at tinf. Such a pattern may reflect a community

populated by generalists or by a mixture of species from

several biogeographic regions. A small value of DC(tinf )

may reflect more specialist species or species from fewer

biogeographic regions. A community with a large value

of j~KCðtinf ; tobsÞj has a composition at tinf, including

species whose niche centroids are far away from the

observed climate at tobs. Such a pattern may reflect a

community located at or beyond the margin of most

species’ climate niches, i.e., at the interface of biogeo-

graphic regions. A small value of j~KCðtinf ; tobsÞj may

instead reflect a community located in the center of most

species’ climate niches. These statistics can be compared

across communities through a regression approach in

which multiple communities’ statistics are plotted as a

function of another predictor variable, e.g., latitude, as

in Fig. 4.

Scaled analysis of community climate deviations

Scaled values of community climate statistics can

provide insights into local community assembly from the

biogeographic processes that may influence unscaled

values of community climate statistics. By comparing

community climate statistics from their null expectation

(Fig. 1E), we can infer the strength of filtering and

FIG. 2. Two ways to use our community climate framework across time. Consider a single community at different times, tinf
and tobs. The community’s composition at any time tinf is shown as colored climate envelopes and centroids (null expectations in
gray), while the trajectory of the observed climate over times tobs is shown as a blue line. (A) Lag times for community assembly can
be determined. If the community composition is known at one time tinf and the observed climate is known at multiple times tobs,
then a single value of dC(tinf ) but multiple values of kC(tinf,tobs) can be calculated. The time tobs, for which kC(tinf,tobs) is minimized,
indicates when the community’s composition at tinf was determined by environmental filtering. (B) Temporal variation in assembly
processes can be inferred. If the community composition, climate niches, and the observed climate are known at multiple times, and
the investigator sets tinf¼ tobs, then multiple values of both dC(tinf ) and kC(tinf,tobs) can be calculated. The resulting time series reflect
the strength of environmental filtering and disequilibrium over time.
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disequilibrium in the local community relative to the

regional expectation.

We draw a random sample of species from the

regional pool P at tinf with richness equal to that of

the community at tinf. Lessard et al. (2012b) provide

guidelines on choosing an appropriate regional pool.

Different research questions can be addressed depend-

ing on the scale chosen for the local community and

the regional pool. For example, one could ask

questions of filtering of species into a 0.1-ha plot

(local community 1) relative to species on a 50-ha

island (regional pool 1), or alternatively, questions of

disequilibrium into an aquatic microcosm (local

community 2) relative to a single lake (regional pool

2) or a set of lakes (regional pool 3). Community

climate deviations therefore describe a property of a

local community relative to the chosen regional pool.

However, the framework does not distinguish pro-

cesses determining the species composition of the

regional pool itself. A useful analogy is a person

walking backward (local community 3) on a train that

is moving forward (regional pool 4). The person is in

disequilibrium with the train (regional pool 4), but

could simultaneously be in equilibrium with the

ground (regional pool 5). Thus the inference depends

on the reference point in the analogy and in the

framework.

We calculate community climate statistics for this null

community sampled from the regional pool, DP(tinf ) and
~KPðtinf ; tobsÞ, and repeat this sampling process a large

number of times to generate null regional distributions,
~DPðtinfÞand ~KPðtinf ; tobsÞ. We then calculate community

climate deviations using a function, X(Aobs,Anull), that

computes a standardized effect size for an observed

statistic, Aobs, by its null distribution, Anull (Eq. 4).

Significance of each deviation can be determined from P

values based on resampling methods (Eq. 5). We define

community climate volume deviation as

dCðtinfÞ ¼ XðDCðtinfÞ; ~DPðtinfÞÞ ð1Þ

and community climate mismatch deviation as

kCðtinf ; tobsÞ ¼ X
�
j~KCðtinf ; tobsÞj; j~KPðtinf ; tobsÞj

�
: ð2Þ

To assess the mismatches along each environmental axis
~ei, we can likewise define

kC;iðtinf ; tobsÞ ¼ X
�
j~KCðtinf ; tobsÞ3~eij; j~KPðtinf ; tobsÞ3~eij

�
:

ð3Þ

Within-region environmental filtering can be detect-

ed when dC(tinf ) , 0. Communities composed of

species whose overlapped climate niches are narrower

than found under a regional expectation reflect the

outcome of strong climate constraints. This is because

fewer species with broad and variable climate toler-

ances can be found (e.g., climate generalists) com-

pared to a random sample of the regional pool.

Conversely, communities composed of species whose

overlapped climate niches are broader than found

under the null expectation (dC(tinf ) . 0) may reflect

the outcome of environmental permissiveness, because

more climate space is occupied than expected.

Alternatively dC(tinf ) . 0 may instead indicate high

microclimate variability that is not captured by a

broadscale analysis.

Environmental disequilibrium can be detected when

kC(tinf,tobs) . 0. Communities with inferred climate at

tinf and observed climate at tobs that are farther apart

than expected contain species with niche centroids closer

to other climates than those in the regional pool.

Alternatively, communities with observed and inferred

climates closer together than expected under the null

expectation (kC(tinf,tobs) , 0) indicate that more species

with niche centroids close to the local climate have

entered the community. Similar inferences hold when

considering the mismatch along each climate axis.

Community climate deviations also can be mapped

onto one or more of the three major processes in

community assembly: environmental filtering, dispers-

al limitation, and species interactions (HilleRisLam-

bers et al. 2012). Environmental filtering is directly

reflected by dC(tinf ), while dispersal limitation or

species interactions can both be indicated by

kC(tinf,tobs). For example, positive values of

kC(tinf,tobs) could be caused by dispersal limitation

relative to the regional pool or by species interactions

leading to displacement of climatically more appro-

priate species. Negative values of kC(tinf,tobs) could be

caused by species interactions leading to increased

niche packing, and thus, clustering of species’ niches

within climate space. The inability of kC(tinf,tobs) to

always distinguish these processes is similar to how

either competition or environmental filtering can drive

under-dispersion in phylogenetic (Swenson and En-

quist 2009, Mayfield and Levine 2010, Bennett et al.

2013) and trait-based (Grime 2006) community

ecology.

Climate mismatch deviations have several potential

causes. These include lack of adaptive niche evolution,

priority effects, limited propagule pressure, and compe-

tition, among others. Displacement of the community-

inferred climate from the observed may be transient,

indicating disequilibrium conditions due to inappropri-

ate species persisting (trailing-edge lags) or appropriate

species failing to colonize (leading-edge lags; see

Dullinger et al. 2012, Svenning and Sandel 2013). On

the other hand, the displacement may be maintained

through time, perhaps because of stabilizing species

interactions.

These statistics can be measured across time when

sufficient data for observed climate or species compo-

sition are available. If observed climates are known at

multiple times, then inferences of lag times can be made

(Fig. 2A). If observed climate, community composition,

and climate niches are known at multiple times, then

BENJAMIN BLONDER ET AL.976 Ecology, Vol. 96, No. 4



temporal variation in the strength of filtering and

mismatch can be inferred (Fig. 2B).

ILLUSTRATING THE FRAMEWORK WITH NEW WORLD

TREE COMMUNITIES

We demonstrate our community climate framework

with data from the New World. Local community data

come from 471 forest plots that are 0.1 ha in size

spanning a 418 S to 538 N latitudinal range (Lamanna et

al. 2014). These plots are measured using a standardized

protocol (Gentry 1982) and represent a uniquely large

sample of New World plant diversity. Mean per-plot

richness is 69 6 40 species (mean 6 SD) species.

Occurrence data come from more than a million

observations of 14 697 woody species, and are aggregat-

ed over approximately the last 100 years. Regional

species pools are variable across communities and are

calculated for each as the set of species with at least one

observation within the ecoregion containing the com-

munity (Olson et al. 2001). Mean pool richness is 2522 6

1042 (mean 6 SD) species.

Climate axes are defined as the annual minimum and

maximum monthly temperature and precipitation.

These axes are chosen for this demonstration analysis

because of their broad importance for plant physiology.

These axes are also somewhat correlated with each

other, but we use them here primarily because of their

conceptual simplicity. Climate data are obtained at three

time points: averaged across the last forty years

(present), within the Last Glacial Maximum (LGM),

and within the Intergovernmental Panel on Climate

Change’s (IPCC) 2007 end-century A1B scenario (2080

CE). The LGM was chosen because it is representative

for the late-Quaternary glacial–interglacial climate

shifts, the strongest Quaternary climatic oscillations

(Sandel et al. 2011), and the A1B scenario because of its

relevance to contemporary global change. Full details of

the data sources and analysis are found in Materials and

methods.

In order to demonstrate how this framework can be

used for hypothesis testing, we made a set of predictions.

For the unscaled analysis, we expected that all

communities would have nonzero climate mismatch

relative to present-day climate, indicating disequilibrium

between vegetation composition and contemporary

climate. Spatially, we also expected that the climate

mismatch would correlate negatively with absolute

latitude (i.e., more mixing of species pools at the

interface of North and South America) and the

magnitude of climate change since the LGM (i.e., more

change is harder to track), and that climate volume

would correlate positively with species’ mean range size

(i.e., more generalists; see Morueta-Holme et al. 2013).

For the scaled analysis, we expected that all

communities would show local-scale environmental

filtering, and therefore negative climate volume devia-

tions (HilleRisLambers et al. 2012). Similarly, we

expected that communities would be in local-scale

disequilibrium with past climate change and therefore

show positive climate mismatch deviations (Svenning
and Sandel 2013), though other community assembly

processes may modulate this expectation. These pre-

dictions are consistent with empirical patterns of
community assembly that we presented in the Intro-

duction. We also predicted climate mismatch deviations

would best reflect historical drivers, i.e., be minimized
relative to LGM climate (Davis 1984) and maximized

relative to rapidly shifting future climate (Bertrand et

al. 2011). Spatially, we predicted that present-day
climate volume deviations would be positively corre-

lated with minimum annual temperature and precipi-

tation because of the limiting effects of freezing and
drought on plant physiology (Reyer et al. 2013).

Finally, we predicted that present-day climate mis-

match deviations would be positively correlated with
the absolute magnitude of climate change since the

LGM (i.e., changes in mean annual temperature and

precipitation), because larger climate changes should
be more challenging to track.

MATERIALS AND METHODS

Mathematical definitions

Consider n climate axes that define a continuous real-

valued environmental space E � <n. A species S at time t

has a realized climate niche NS(t) � E that can be
inferred by transforming species observations in geo-

graphic space into climate space. Suppose also the

community, C, has richness c.
We define the inferred climate of C at time tinf as the

mean median value of samples from the climate niche of

each species i in the community averaged across r
replicates.

~EinfðtinfÞ ¼
1

r

Xr

j¼1

Q
�
[
c

i¼1
~r
�

NiðtinfÞ
�
; 0:5

�
: ð4Þ

Here, Q(x,y) is the yth quantile of x and ~rðNÞdenotes a
single random sample from N.

We define community climate volume, DC(tinf ),

through a proxy of the median distance to the inferred
climate from random samples of each species’ niche

averaged across r replicates

DCðtinfÞ ¼
1

r

Xr

j¼1

Q
�
[
c

i¼1
j~r
�

Nki
ðtinfÞ �~E infðtinfÞ

�
j; 0:5

�
:

ð5Þ

By sampling from each species’ niche before making the

median calculation, we effectively account for niche

breadth. This distance-based metric is chosen because it
is has fewer assumptions and is computationally much

faster than other volume estimation methods (e.g.,
Cornwell et al. 2006; Blonder et al. 2014).

We also define community climate mismatch,
~KCðtinf ; tobsÞ, as the vector between the inferred climate

at time tinf and the observed climate at time tobs
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~KCðtinf ; tobsÞ ¼ ~EinfðtinfÞ �~EobsðtobsÞ: ð6Þ

We define the rescaling function that transforms

observed and null values of an arbitrary statistic A into

a standardized effect size as

XðAobs;AnullÞ ¼
Aobs � QðAnull; 0:5Þ

QðAnull; 0:75Þ � QðAnull; 0:25Þ : ð7Þ

We finally define a two-tailed P value for this effect size

pðAobs;AnullÞ ¼ If

Aobs , Ānull;
2 � jAobs . Anullj

jAnullj

Aobs � Ānull;
2 � jAobs , Anullj

jAnullj

8>>>><
>>>>:

ð8Þ

where vertical bars indicate the number of elements in

each set.

Occurrence data

We obtained observations of plant occurrences

through the BIEN database (Enquist et al. 2009), which

integrates georeferenced plant observations from her-

barium specimens, vegetation plot inventories, and

species distributions maps for the New World (see

footnote 13). All taxonomic names were standardized

using the Taxonomic Name Resolution Service,15 and

all observations were geographically validated to ensure

the accuracy of their reported locations. We retained

noncultivated observations of only tree or liana species

after assigning habit to each species from the TRY

database (Kattge et al. 2011). We then retained only

observations that were not part of the plot data

described below, so that the occurrence and plot data

would be independent from each other. The final dataset

included 14 697 species and 1 083 361 observations. All

these observations are assigned to tinf¼ tpres, but actually

span approximately the last 100 years. We therefore

make the assumption that the climate niche variation

within this time period is much smaller than variation

relative to tLGM and t2080.

Community data

We began by obtaining presence/absence data from a

network of 575 0.1-ha Gentry-style forest plots (Gentry

1982). Every tree or liana individual in the plot with

diameter at breast height greater than 2.5 cm was

surveyed and was subsequently identified to species

whenever possible. These plots have limited coverage in

some important areas (e.g., Amazon basin, Pacific

Northwest).

Because of the potential biases inherent in morpho-

species identification and because of statistical require-

ments to have at least as many species as climate axes in

each plot, we removed from the analysis all taxa that

could not be identified to species level (morphospecies),

resulting in a lower effective richness. We then retained

plots (1) originally containing no more than 50%
morphospecies, (2) having an effective richness of at

least three, and (3) with an original richness less than the

species pool richness. This process resulted in a final

data set of 471 plots spanning a latitudinal range of 418 S

to 538 N with mean richness of 69 6 40 species (mean 6

SD).

Climate data

We obtained climate data for four bioclimatic

variables: maximum temperature of warmest month

(103 8C), minimum temperature of coolest month (103

8C), precipitation of wettest month (mm), and precip-

itation of driest month (mm). We chose these four axes

because they represent the extremes of two major axes of

climate variation that are relevant to plants and are also

easily interpreted. Data were obtained at 2.5-arcminute

resolution for three different time periods. Present-day

data came from the WorldClim data set (Hijmans et al.

2005). Last Glacial Maximum data (21 ky ago) was

generated by the Community Climate System Model

(CCSM; Braconnot et al. 2007). Future data for 2080

CE (Common Era) was generated by CCSM3 under the

IPCC’s 2007 SRES A1B scenario (available online).16

Because of high skewness, we square-root-transformed

the precipitation layers. We then transformed each layer

Li,t (variable i, at time t) to a centered and scaled value

relative to contemporary values as L
0
i;t ¼ X(Li,t,Li,pres),

after excluding Greenland from the analysis. Using this

approach, the transformed climate variables represent

standardized anomalies relative to present-day climate,

and climate space distances can be compared between

different time points.

Spatial predictors

We explored several potential predictors for commu-

nity climate statistics. Minimum temperature and

precipitation variables were obtained from present-day

WorldClim data as BIO6 and BIO14, respectively.

Climate shifts were calculated as the absolute value of

the difference between present-day and Last Glacial

Maximum mean annual temperature and precipitation.

These shifts were calculated using the sources listed in

Materials and methods: Climate data. Range size for

species in each local community were calculated as

convex hulls and obtained from the BIEN database

(Morueta-Holme et al. 2013).

Implementation of framework

All analyses were conducted within the R statistical

environment (R Development Core Team 2007) using

our freely available ‘‘comclim’’ package. Climate niches

for all species were obtained by transforming georefer-

15 http://tnrs.iplantcollaborative.org 16 http://bien.nceas.ucsb.edu
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enced observations into climate space using present-day

climate layers. Observed climate at each community was

obtained by transforming the location of each commu-

nity into climate space using present-day, past, or future

layers.

Regional species pools were constructed by determin-

ing which species in the New World species pool had at

least one occurrence into each of the World Wildlife

Fund 299 New World global ecoregions (Olson et al.

2001). We then assigned each community to an

ecoregion based on its location and defined its species

pool as the set of species occurring within the ecoregion.

Mean pool richness was 2522 6 1042 species (mean 6

SD). While other species pool definitions are possible

and useful (Lessard et al. 2012a), we did not consider

them for this study because our intent was primarily to

demonstrate the framework in as simple a manner as

possible.

Climate statistics were calculated for each community

as the average of 100 random samples from the niche of

each present species. To compute community climate

deviations, we generated null communities for each

community. Community compositions reflected random

sampling (with replacement) from the regional species

pool preserving the species richness of the observed

community. We generated 100 null communities and

then followed the procedure for the observed commu-

nities to generate the distributions D̃P and K̃P. We then

used these distributions to calculate dC and kC.

RESULTS

We created community climate diagrams for all 471

communities. An example is shown in Fig. 3.

Unscaled analysis

We found strong spatial gradients in community

climate statistics (Fig. 4). Community climate volume

(DC(tinf )) was largest in the tropics (Pearson’s q¼�0.48,
P , 10�16) and was correlated with mean range size as

expected (q¼ 0.42, P , 10�16). Contrary to expectation,

community climate mismatch (j~Kðtpres; tpresÞj) did not

show a latitudinal gradient (P ¼ 0.09). However, larger

mismatch values were found at sites with higher

minimum precipitation (q ¼ 0.56, P , 10�16) or higher

changes in precipitation since the LGM (q ¼ 0.54, P ,

0.01), the latter indicating some control of contempo-

rary species composition by paleoclimate. Both volume

and mismatch were also correlated with species pool

richness and local richness.

Scaled analysis

We found that 435 out of 471 communities showed

dC(tpres) , 0, consistent with strong environmental

filtering from the regional pool, and kC(tpres,tpres) . 0

for 112 out of 471 communities, consistent with local

environmental equilibrium in the majority of communi-

ties (Fig. 5). Some climate axes showed more disequi-

librium than others (Fig. 6). The mean value of

kC;iðtpres; tpresÞ was negative for maximum and minimum

temperature (�1.3 and �0.6, respectively) and positive
for maximum and minimum precipitation (0.2 and 0.5,

respectively).
We next determined at what times climate mismatches

were minimized. We found that kC(tpres,tLGM) ,

kC(tpres,tpres) for about one-half of all communities

(244/471; v2
1 ¼ 0.61, P ¼ 0.43), indicating statistically

indistinguishable levels of equilibrium between present-
day vegetation and LGM climate and present-day

vegetation and present climate. However, we did find
that kC(tpres,tpres) , kC(tpres,t2080) for most communities

(283/471; v2
1 ¼ 21.46, P , 10�5). These results indicate

that most communities will come into greater disequi-

librium with near-future climate change, i.e., in the
absence of species turnover or range shifts.

Spatial predictors of community climate deviations
showed a weak latitudinal gradient (Fig. 7). Climate

volume deviations (dC(tpres)) were larger when minimum
precipitation (q ¼ 0.42, P , 10�16) or mean range size

(q ¼ 0.26, P , 10�8) were higher, consistent with
predictions. Volume deviations were also higher in sites

with more temperature (q ¼ 0.21, P , 10�5) and
precipitation (q ¼ 0.27, P , 10�8) change since the

LGM, indicating that climatically unstable areas have
local communities more structured by environmental

filtering. Climate mismatch deviations (kC(tpres,tpres))
were larger at sites with larger-ranged species (q¼ 0.50,

P , 10�16), consistent with predictions, and also larger
for more temperature change since the LGM (q ¼ 0.40,
P , 10�16). There were only limited effects on either

statistic of regional pool or local richness.

DISCUSSION

Interpretation of empirical results

Our finding of mismatch between community com-

position and contemporary climate runs contrary to a
key assumption of climate proxies based on species

composition data. These use occurrence data from
paleo-communities (e.g., pollen cores, packrat middens,

or insect fragments; see Birks et al. 2010) to infer climate
based on overlapping species’ climate niches (Kühl et al.
2002) and assume that ~Kðtinf ; tobsÞ ¼ 0. In the forest plots

analyzed, we found that values of j~Kðtpres; tpresÞj took a
mean value of 0.41 6 0.32 (mean 6 SD), a distribution

that is significantly different than zero (P , 10�16) and
consistent with one-dimensional studies of climate

mismatch (Clavero et al. 2011, Devictor et al. 2012).
This result indicates that better understandings of the

drivers of mismatch are needed before these paleocli-
mate proxies can be confidently applied.

Our scaled analysis showed that most forest commu-
nities show environmental filtering and environmental

equilibrium relative to their regional species pools, while
a smaller number are also in climatic disequilibrium at

this spatial scale. The finding of strong environmental
filtering is consistent with the results of many trait-based

and phylogeny-based studies (HilleRisLambers et al.
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2012). The scarcity of forest communities showing local-

scale environmental disequilibrium relative to their

regional species pools indicates that local communities’

composition are no more mismatched to climate than

their regional pools are, consistent with an absence of

additional local-scale assembly processes. This result

may be influenced by our particular choice of species

pool, which was chosen primarily for conceptual clarity,

or the 100-year temporal aggregation of occurrence data

for tinf ¼ tpres. Where we do find disequilibrium, it is

primarily linked to precipitation: our axis-by-axis

analysis showed that contemporary plant communities

closely track temperature, but show the most mis-

matched response to precipitation. This precipitation

FIG. 3. Example community climate diagram for the CARY forest plot at the Institute of Ecosystem Studies in Dutchess
County, New York, USA. Each panel shows a two-dimensional projection of the rescaled climate space. The solid red dot indicates
the inferred climate of the community, while individual red dots indicate centroids of species’ niches. The climate volume at tinf¼
tpres is drawn as a red-outlined circle, and the climate mismatch is drawn from the inferred climate at tinf¼ tpres to three observed
climates: contemporary (tobs¼ tpres), future A1B scenario in the year 2080 CE (tobs¼ t2080), and Last Glacial Maximum (LGM) (tobs
¼ tLGM). Five null communities sampled from the regional species pool are shown with species’ centroids as gray points and climate
volumes as black circles. Via scaled statistics, this community shows filtering (dC(tpres)¼�0.3; red circle smaller than black circles)
and disequilibrium (kC(tpres,tpres)¼5.4; red vectors longer than thin black vectors for the tobs¼ tpres climate). Via unscaled statistics,
this community also shows an absolute climate volume (DC(tpres)¼ 0.4) and climate mismatch (j~Kðtpres; tpresÞj ¼ 0.5) that are both
smaller than across other communities shown in Fig. 4. Abbreviations are: pres, present; T, temperature; P, precipitation; min,
minimum; and max, maximum.
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mismatch deviation contrasts with an earlier study of

temperature lag in herbaceous-only species (Bertrand et

al. 2011) but is consistent with the correlation of

paleoprecipitation change with climate deviations seen

across communities in this analysis.

Our spatial analysis indicated that environmental

filtering and disequilibrium are partially predictable

from site characteristics. Correlations in both deviations

were associated with the magnitude of climate change

since the LGM, indicating that community composition

is still responding to past climate change. Note however

that LGM climate estimates remain poorly constrained

between different models, so this result should be viewed

as preliminary. Nevertheless, our analysis does suggest

that current and future climate change will further move

these communities even farther from climatic equilibri-

um.

Limitations of the framework

Our community climate framework comes with three

important limitations. First, inferences from the scaled

version of the framework are sensitive to the definition

of the regional species pool and other attributes of the

null model. Of most importance, the definition of the

species pool affects the deviation of estimates and

statistical power (Gotelli and Graves 1996, Gotelli and

Ulrich 2012), both of which can lead to misinterpreta-

tion of the biological meaning of the results (Swenson et

FIG. 4. Unscaled results: Spatial patterns and predictors of (A) DC(tpres) (climate volume) and (B) j~KCðtpres; tpresÞj (climate
mismatch). Communities are colored and sized by their magnitude. The statistics are associated with a range of spatially variable
predictors, shown in panel (C) for DC(tpres) and panel (D) for j~KCðtpres; tpresÞj. Histogram bar lengths indicate the Pearson
correlation coefficient between each predictor and community climate statistic and are not shown if the correlation is not significant
at the a¼ 0.05 level. Abbreviations are: pres, present; T, temperature; P, precipitation; and min, minimum.
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al. 2006, Lessard et al. 2012b). The geographic extent

and configuration of each community’s regional pool

may affect our results. For example, the ecoregional

pools we used are already environmentally filtered from

the global species pool, making inferences of local-scale

filtering more powerful; on the other hand, a larger

regional pool may be more appropriate for assessing

disequilibrium due to postglacial recolonization. Addi-

tionally, the null model used in the demonstration

analysis does not incorporate abundance or demograph-

ic information (e.g., as in Gotelli et al. 2010). Rare and

common species are given equal weight when computing

community climate statistics, which may especially bias

disequilibrium inferences. The comclim R package does

allow for weighted sampling and variable definitions of

species pools for each community. We suggest that real-

world analyses examine the sensitivity of results to

several species pool definitions (Lessard et al. 2012b).

Second, the approach assumes that the realized

climate niche is a good representation of the fundamen-

tal climate niche defined by physiological tolerances

(e.g., Araújo et al. 2013). Bias in community climate

deviations would occur if fundamental niches were

systematically displaced in one direction relative to

realized niches (e.g., because of modulation by land use;

Clavero et al. 2011). Conceptual arguments (Peterson et

al. 2011) and empirical data from a range of taxa

(Araújo et al. 2013) have shown that systematic rather

than random displacement can occur, with fundamental

niches often extending into regions of climate space not

currently filled by a species or with contemporary

abundance peaking in regions of climate space far from

the physiological optimum (Murphy et al. 2006). This is

an unavoidable limitation of observational data. Our

framework can be modified to use fundamental climate

niche data by replacing the mapping from occurrence

data to climate space with a response surface determined

via experiment (Colwell and Fuentes 1975). Such data

are now becoming available along a limited set of

climate axes for some animals (Kearney and Porter

2004) and some plants (Araújo et al. 2013). Regardless,

our finding of local climatic equilibrium relative to

regional species pools, contrary to expectation, may

partially be driven by an inability to capture the

fundamental niche of each species.

Third, the use of differing climate axes can also

modulate inferences, because species’ niches may appear

very different when projected in different climate

dimensions. This issue is also relevant to species

distribution modeling (Peterson et al. 2011), and we

recommend similar guidelines for axis choice: as small a

number as possible and as physiologically relevant as

possible. If these issues are concerning, it is also possible

to repeat analyses for various combinations of climate

axes or species pool definitions, e.g., via ensemble

modeling (Araújo and New 2007).

Future opportunities

Climate shows variability at multiple timescales (e.g.,

decadal, millennial, interglacial), with species respond-

ing differently at each scale depending on factors such as

adaptive potential, lifespan, and dispersal ability (Davis

1984). Our framework provides an approach to quantify

these dynamics of disturbance, succession, and paleo-

climate change. The necessary data are climate and

occurrence data for multiple time points. This approach

FIG. 5. Distribution of community climate deviations
across 471 New World tree communities. Each point represents
a unique 0.1-ha plot. The differing interpretations of the
statistics are shown in each corner. Plots for which at least one
statistic is significantly different from zero are shown as black
dots; otherwise as gray circles.

FIG. 6. Vector components of community climate mismatch
deviations, indicating which axes of climate are in disequilib-
rium with species composition. Distributions are calculated
across communities. Axes are maximum temperature (max T ),
minimum temperature (min T ), maximum precipitation (max
P), and minimum precipitation (min P).
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is especially important when climate-niche evolution,

niche shifts, or variation in community and species pool

composition occur over time (Broennimann et al. 2011,

Blois et al. 2012, Petitpierre et al. 2012). For example,

community climate mismatches can be calculated from

the present day relative to a range of past climates if

paleoclimate data are available. Recent advances with

global circulation models (Collins et al. 2006) are

enabling better reconstruction of paleoclimate at more

time points than those studied here (i.e., just the LGM).

If paleo-niche data are also available, then it also

becomes possible to assess community climate mis-

matches and volumes at an arbitrary time in the past.

Such data can be obtained through several routes: if

occurrence data are also available at multiple times, they

can be combined with paleoclimate layers; alternatively

climate niches can be reconstructed directly using

phylogenetic approaches (Lavergne et al. 2013).

Our New World analysis is intended primarily as a

demonstration, but our community climate framework

can be applied widely. One advantage of the framework

is the ability to recast assembly processes in terms of

lagged selection on climate niches, providing a novel

temporal perspective that complements phylogenetic

and trait-based frameworks. A second advantage is

easily satisfied data requirements. Data that will allow

application to a wider range of taxa and spatial scales

are becoming increasingly available. Initiatives like

FIG. 7. Scaled results: Spatial patterns and predictors of (A) dC(tpres) (climate volume) and (B) kC(tpres,tpres) (climate mismatch).
Communities are colored and sized by their magnitude and drawn with upward triangle if positive and downward triangle if
negative. The statistics are associated with a range of spatially variable predictors, shown in panel (C) for dC(tpres) and panel (D) for
kC(tpres,tpres). Histogram bar lengths indicate the Pearson correlation coefficient between each predictor and community climate
statistic, and are not shown if the correlation is not significant at the a¼ 0.05 level.
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BIEN are being developed for plant distributions and

assemblage composition in China (Fang et al. 2012) and

Europe (Dengler et al. 2011). Similar initiatives also

exist for mammals (Thibault et al. 2011) and birds (e.g.,

Breeding Bird Survey; available online).17 Moreover,

paleo-assemblage and paleo-occurrence data are also

becoming more available through recent database

efforts (e.g., Neotoma; available online).18 Paired with

the growing availability of high-quality, spatially re-

solved paleoclimate estimates from general circulation

models (e.g., Liu et al. 2009) and climate niche

reconstructions based on phylogeny (Evans et al.

2009), reconstructing climate niches of multiple species

and communities should soon become achievable

(Nogués-Bravo 2009).
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